Biotheology: ethics and biotechnology

By Brian Edgar

The term ‘bioethics’ is usually construed too narrowly (as bio-medical ethics relating to the person) rather than as a parallel to the wide range of issues covered by biotechnology (including gene manipulation, nanotechnology, biodiversity, ecology, biopharming , reproductive medicine and stem cell research etc), and there is a tendency to overlook the significance of the overall connectedness of human, animal and plant life.

Therefore what is required is a new field of biotheology to go alongside the more traditional sub-disciplines of systematic theology such as theological anthropology (doctrine of humanity), Christology, pneumatology, ecclesiology etc.An intentional focus on biotheology will enhance the understanding of the human person as a part of the full spectrum of life created by God and it will provide greater form and depth to reflections on the diverse and difficult issues which biotechnology generates and with which bioethics needs to deal.

This is an argument I developed in a paper first delivered as the Annual ISCAST (Vic) lecture and later published as ‘Biotheology: Theology, Ethics and the New Biotechnologies’, in the Evangelical Review of Theology, (2006) Vol. 30, No 3, 219-236. It is also available on the ISCAST site and downloadable here:  Biotheology: theology, ethics and the new biotechnologies

In this paper I propose six biotheological principles which are designed to give ethical cohesion and theological structure to this new field

The aim is to establish a set of principles which will provide a framework for ethical and theological reflection on all levels of life and being—human, animal, plant and inanimate, both present and future. They are:

(1) respecting the intrinsic value of all life;

(2) valuing human uniqueness;

(3) preserving organismal integrity;

(4) recognising ecological holism;

(5) minimising future liability; and

(6) producing social benefit.

These principles operate in the same way as the biomedical principles of beneficence, non-maleficence and so forth. That is, they do not automatically provide an answer for all the specific issues that can be raised, but they do provide a framework which controls the form of the discussion and they provide guidelines as to the essential issues that need to be addressed.

The first part of the lecture is reproduced here:

Biotechnology

The ethical issues dealt with under the heading ‘bioethics’ should logically parallel the scientific and technological issues which are covered in ‘biotechnology’. However, the breadth and diversity of the territory covered by biotechnology (including gene manipulation, nanotechnology, biodiversity, ecology, biopharming (the use of genetically modified crops to produce pharmaceuticals, vaccines, hormones etc), reproductive medicine, stem cell research etc) is rarely matched in the field of bioethics where discussions are usually restricted to a much narrower area relating specifically to the treatment of the human person. This means that bioethics rarely situates the human person in the broader context which biotechnology presupposes and there is a tendency to overlook the significance of the connectedness of human, animal and plant life. Bioethics as it is usually understood is better referred to as biomedical ethics.

This paper aims to contribute by bringing bioethics into line with biotechnology – which will mean re-framing the ethical context; it also aims to encourage the development of the complementary field of biotheology as a theology of life which belongs alongside the more traditional sub-disciplines of systematic theology such as theological anthropology (doctrine of humanity), Christology, pneumatology, ecclesiology etc. An intentional focus on biotheology will enhance the understanding of the human person as a part of the full spectrum of life created by God and it will provide greater form and depth to reflections on the diverse and difficult issues which biotechnology generates and with which bioethics needs to deal. After further outlining the situation with regard to biotechnology and bioethics I will propose six biotheological principles which are designed to give ethical cohesion and theological structure to this new field.

Some assume that biotechnology began in 1972 when the first recombinant DNA technology

experiment was performed. However, although the most recent developments in molecular biology and genetic engineering are critically important, biotechnology has been a part of human history for thousands of years, at least since the ancient Sumerians and Babylonians used yeast to make beer, the Egyptians leavened their bread and the ancient Chinese used fermentation processes to preserve milk and produce cheese and wine. It has continued on through a wide variety of attempts to manipulate breeding processes, preserve foods, achieve artificial reproduction and generally control the processes of life and death and manipulate the forms in which life exists.

As a consequence of this, a sampling of biotechnological issues now includes various medical interventions and their effects on human life and death; reproductive technologies for humans and animals; gene analysis, modification and therapy for plants, animals and human; nanotechnology and issues relating to the human-machine interface; stem cell research and therapy; some biological mining and manufacturing techniques such as the leaching of ores and mine site rehabilitation; food and flavouring technologies; various agricultural techniques and crop modifications including improved food storage and nutritional quality, better pest resistance and increased water, temperature and salinity tolerance and biopharming; forestry issues involving faster tree growth, improved fibre, disease resistance and so forth; as well as aquaculture and various forms of animal research. The common points which run throughout are, firstly, the attempt to use biological processes to technological advantage in order to improve the quality of life and, secondly, the perceived connectivity between all forms of life.

This extraordinary array of issues comes about because of the way late twentieth century biotechnology brought together research done in a wide range of areas. This produced a synergy which set the scene for a biological revolution in the twenty-first century which will equal or surpass in significance the computing and information technology revolution of the last century.

One of the main reasons for this development relates to the way biotechnology has begun to unite a field which previously was divided in at least two ways. It was divided ‘vertically’ according to the levels of research which took place and ‘horizontally’ according to the areas which were being investigated. There are at least six levels of research which have come together; these are the sciences which operate at the level of: (1) molecules (e.g. molecular biology, especially research on DNA and recombinant technology); (2) cells (e.g. cell biology including work on stem cells, aging processes and reproductive technology); (3) organs (e.g. transplantation and xenotransplantation and the manufacture of replacement tissues); (4) species (e.g. the nature and dynamics of the way species function and interact and the influence of genetically modified organisms on them); (5) humans (e.g. abortion, euthanasia, the use of medical technologies); and (6) systems (e.g. ecology and the influence of biological technologies). The work taking place at these different levels has become much more integrated than previously, and this dynamic inter-relationship has implications for the way previously different areas of research have come together.

While much common thought persists with a strong differentiation between areas of research on say, bacteria, humans, animals and plants, those actually working in these areas now tend to view the situation much more fluidly. At the heart of this has been the ever increasing focus on the role of DNA in life processes. From a scientific point of view the distinction between, for example, ‘human genes’ and ‘animal genes’ is arbitrary. There may well be ‘genes which humans have’ but at the most fundamental level the genes are not perceived as intrinsically human or animal, DNA is simply DNA wherever it is found.

The obvious reality is that gene transfer is now possible in such a way that old distinctions are being called into question. Previously impenetrable barriers are now being crossed and the old taxonomies of species and the distinctions which have previously divided medical technology, animal and crop research and the study of ecological systems are being called into question. Trans-kingdom gene transfer, biopharmaceuticals, nanotechnology and other such areas of research increase the trend towards a level of integration not generally matched in the ethical or theological fields.

Bioethics

The term ‘bioethics’ was coined in 1971 by cancer researcher Van Rensselaer Potter in Bioethics: Bridge to the Future (Potter 1971). Potter had a broad view and used the term to relate to all issues related to life. He did not equate bioethics with human biomedical research. He argued that advances in biotechnology had implications for all life systems and societies and he expounded on this in his subsequent book, Global Bioethics which integrated a scientific view of the world with religious and philosophical systems.

However, Potter’s breadth of vision for a form of bioethics which matched the breadth of biotechnology was soon supplanted by a much narrower view dominated by medical researchers and ethicists. In 1976 Thomas Shannon published his influential book Bioethics (Shannon 1976) in which he dealt with abortion, handicaps, euthanasia, the right to die and the treatment of the terminally ill, research on humans and informed consent. In the second edition in 1981 he added material on genetics and reproduction. He noted that the study was complicated by the interdisciplinary nature of the problems and by the continuing advances of science, but defined bioethics as ‘a set of ethical teachings related specifically to medicine’.

The new field of bioethics continued on in the work of writers such as Gerald Kelly, John Ford, Richard McCormick, Charles Curran, Daniel Maguire, and Daniel Callahan. In 1986 H. Tristram Englehardt Jr., produced The Foundations of Bioethics (Englehardt 1986). In this standard text, bioethics was essentially about health care for humans including issues such as the beginning and ending of human life. This was, essentially, ‘Bioethics Mark I’.

There have been times when bioethics has come closer to taking on a broader perspective. In 1988 David Suzuki and Peter Knudson wrote Genethics: the ethics of engineering life.(Suzuki 1989) This popularised the new term ‘genethic’ and was influential in helping people think more broadly, but it remained outside the field of ‘bioethics’. In 1991, for example, Francisco Javier Elizari Basterra’s Bioethics continued to treat ‘bioethics’ as medical ethics and little more (Basterra 1991). In 1996 Gilbert Meilaender’s Bioethics (Meilaender 1996) still dealt primarily with issues concerning the beginning and ending of human life (abortion and euthanasia), although some genetics issues did make an appearance, though solely in terms of how it affected humans.

In Cutting edge Bioethics: a Christian exploration of technologies and trends (Hook, 2002) there was almost a return to Van Rensselaer Potter’s original conception of bioethics. However, it can hardly be said that since then bioethics as a whole reflects the area covered by biotechnology or deals with the issues in the more integrated manner it deserves. It is still dominated by the medical model. ‘Bioethics Mark II’ needs to be developed to draw its principles from a wider ethical and theological background.

What can be learned from the usual medical approach to bioethics is the effectiveness of having a simple, yet comprehensive set of principles which establish the essential ground to be covered in any discussion of a specific issue. Bioethics Mark I has established a set of four or five principles which provide a basis on which to consider specific issues. These principles, in one form or another, are well known among the medical community[1] and may be summarised briefly as:

(1) beneficence (requiring actions which promote the good of the patient;

(2) non-maleficence (prohibiting action which will cause harm);

(3) patient autonomy (meaning that practitioners should not interfere with the effective exercise of patient autonomy);

(4) justice (requiring that social benefits and costs be distributed fairly);

(5) confidentiality (patients are to retain control of information generated in connection with their treatment).

One can debate the value of these principles and the concept of a principled approach in general. It can be argued, for instance, that there is a tension between respecting the freedom of the person and securing their best interests. In fact there is a tendency for the third principle to trump all the others, which means, amongst other things, that the practitioner is divested of any significant ethical responsibility. Nonetheless the impact and the value of these principles should not be underestimated. Even though it is not always clear precisely what they imply in a specific situation, they have provided an agenda and set the ground rules for discussion.

What is needed now is a new set of principles which can perform the same function for the new field of Bioethics Mark II that these medical principles have performed for Bioethics Mark I. There is a need for a set of principles which will provide a single, theologically sound[2] and generally acceptable foundation for the whole field of gene technology ethics. .

Biotheological principles

The present aim is to establish a set of principles which will provide a framework for ethical and theological reflection on all levels of life and being—human, animal, plant and inanimate, both present and future. They are:

(1) respecting the intrinsic value of all life;

(2) valuing human uniqueness;

(3) preserving organismal integrity;

(4) recognising ecological holism;

(5) minimising future liability; and

(6) producing social benefit.

These principles operate in the same way as the biomedical principles of beneficence, non-maleficence and so forth. That is, they do not automatically provide an answer for all the specific issues that can be raised, but they do provide a framework which controls the form of the discussion and they provide guidelines as to the essential issues that need to be addressed. The following brief outline of the six principles can only elaborate briefly on the rationale for including the various principles and on the kind of issues they can address.

For the rest of the article see the download instructions above.


[1] One well known form of them was articulated by Tom Beauchamp and James Childress in Principles of Biomedical Ethics, (Beauchamp, 1989).

[2] Interestingly, Christian theologians were very involved in the early development of the field of bioethics in the 1970’s, but that contribution has diminished over the years and bioethics has become, in many places, a secular field and the Christian contribution, where it exists, is reduced to an ethical commentary, and often the ethical dimension is reduced to being purely utilitarian in form.

This entry was posted in Biotheology Theory, Science and Faith Theory. Bookmark the permalink. Both comments and trackbacks are currently closed.